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Linear waves in bounded inviscid fluids do not generally form normal modes with
regular eigenfunctions. Examples are provided by inertial waves in a rotating fluid
contained in a spherical annulus, and internal gravity waves in a stratified fluid
contained in a tank with a non-rectangular cross-section. For wave frequencies in the
ranges of interest, the inviscid linearized equations are spatially hyperbolic and their
characteristic rays are typically focused onto wave attractors. When these systems
experience periodic forcing, for example of tidal origin, the response of the fluid can
become localized in the neighbourhood of a wave attractor. In this paper, I define a
prototypical problem of this form and construct analytically the long-term response
to a periodic body force in the asymptotic limit of small viscosity. The vorticity of
the fluid is localized in a detached shear layer close to the wave attractor in such a
way that the total rate of dissipation of energy is asymptotically independent of the
viscosity. I further demonstrate that the same asymptotic dissipation rate is obtained
if a non-viscous damping force is substituted for the Navier–Stokes viscosity. I discuss
the application of these results to the problem of tidal forcing in giant planets and
stars, where the excitation and dissipation of inertial waves may make a dominant,
or at least important, contribution to the orbital and spin evolution.

1. Introduction
Geophysics and astrophysics give rise to problems involving waves in axisymmetric

rotating fluid bodies. The fluid outer core of the Earth supports inertial waves,
for which the Coriolis effect provides the restoring force. Such waves have been
tentatively identified in gravimetric data and related to theoretical work as well
as laboratory experiments (e.g. Aldridge & Lumb 1987). Helioseismology uses
the observed frequencies of solar oscillations to deduce the internal structure and
rotation of the Sun, while asteroseismology applies related techniques to distant stars
(e.g. Christensen-Dalsgaard 2002). Waves in astrophysical accretion disks have been
studied because of their important role in the interaction of a planet or other satellite
with the disk in which it forms (e.g. Goldreich & Tremaine 1980), and also in an
attempt to explain observed quasi-periodic oscillations from accreting white dwarfs,
neutron stars and black holes (e.g. Kato 2001). Some of these problems involve free
modes of oscillation that may grow through mechanisms of overstability or may be
excited by turbulent noise. Tidal interactions between orbiting and spinning bodies,
however, involve an almost strictly periodic forcing of waves.
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After the linearized wave equations governing the dynamics of the fluid are reduced
by Fourier analysis in time and azimuth, there results a two-dimensional problem for
the spatial structure of the wave in the meridional plane (see Appendix A). In the
absence of dissipative effects such as viscosity, this problem may have either elliptic or
hyperbolic character depending on the frequency of the wave. A mixed-type problem
may also occur if the character of the equations changes from one part of the body to
another. Typically, hyperbolic character occurs when the wave frequency (Doppler-
shifted, in the case of a non-axisymmetric wave, into the frame rotating with the
local fluid) is small, in the range of inertial and gravity waves rather than acoustic
waves. When a hyperbolic system of equations is posed in a finite region with physical
boundary conditions on a closed surface, rather than the mathematically canonical
Cauchy boundary conditions on an open surface, the problem can be regarded as
ill-posed and generally does not possess a regular solution. This property presents
a serious difficulty when one seeks the response of a body to low-frequency tidal
forcing. (In accretion discs, where the systematic shear causes a strong Doppler shift
of the frequency of non-axisymmetric waves, the equations typically have hyperbolic
character in the vicinity of the corotation resonance.)

It is possible to sidestep this issue in certain problems of special symmetry where a
separation of variables can be applied. For example, in a spherically symmetric non-
rotating star the linearized equations can be projected onto spherical harmonics
and the problem reduced to a system of ordinary differential equations in the
radial direction. Most treatments of tides in stars and giant planets have used
this approach (e.g. Zahn 1970), or have included the Coriolis force within the so-
called ‘traditional approximation’ (in which only the radial component of the angular
velocity is considered), which also permits a separation of variables (e.g. Ioannou &
Lindzen 1993; Savonije & Witte 2002). The simplest problems involving inertial waves,
featuring an incompressible fluid in a full spherical, spheroidal or cylindrical container,
can also be solved by separation of variables and appear to possess complete sets
of normal modes with regular eigenfunctions, even in the absence of viscosity (e.g.
Greenspan 1968; Zhang, Liao & Earnshaw 2004).

Unfortunately, the approximation of a non-rotating star is rarely valid in problems
of tidal forcing. The tidal frequencies are linear combinations of the orbital and
spin frequencies with small integer coefficients, apart from small corrections due to
any precessional effects. In most problems of interest, the frequencies of the most
important tidal components are smaller in magnitude than twice the spin frequency
of the body, and the Coriolis force cannot be neglected (Ogilvie & Lin 2004). The
traditional approximation is valid only in stably stratified regions where the tidal
frequency is much less than the buoyancy frequency, and does not apply in convective
regions of stars or giant planets where the buoyancy frequency is essentially zero. In
such regions, the wave equations are hyperbolic in character, describing pure inertial
waves, and cannot be solved by separation of variables. Numerical solutions of the
two-dimensional problem were obtained by Savonije, Papaloizou & Alberts (1995)
and Savonije & Papaloizou (1997) in the case of an early-type star with a small
convective core and, more recently, by Ogilvie & Lin (2004) in the case of a giant
planet with an extended convective region.

Numerical studies have revealed the intricate structure of inertial waves in an
incompressible rotating fluid contained in a spherical annulus (Hollerbach & Kerswell
1995; Rieutord & Valdettaro 1997). In order to find normal modes it is necessary
to include a viscosity so that the problem becomes of elliptic character and is
mathematically regularized. As the viscosity tends to zero the eigenfunctions become



Wave attractors and tidal disturbances 21

increasingly localized in the neighbourhood of singular linear structures known as
wave attractors, as described in greater detail by Rieutord, Georgeot & Valdettaro
(2001) and Rieutord, Valdettaro & Georgeot (2002). A wave attractor can be
understood as a limit cycle towards which the characteristic rays of the inviscid
wave equation are focused as they reflect repeatedly from the boundaries of the
container. Unlike the case of a full sphere, it appears that inertial waves in a spherical
annulus do not possess regular eigenfunctions in the absence of viscosity, apart from
the exceptional ‘r modes’ or ‘toroidal modes’ which involve no radial motion. The
presence of an inner core introduces a complexity into the reflection patterns of
the characteristic rays and causes them to be focused onto wave attractors. The
existence and importance of these closed ray circuits in spherical shells have been
known for some time (Stern 1963; Bretherton 1964) and many features of this
problem were understood before the advent of high-resolution numerical calculations
(Stewartson & Rickard 1969; Stewartson 1972).

Wave attractors have also been studied for internal gravity waves. In a notable
experiment, Maas et al. (1997) applied a periodic forcing to a narrow tank containing
a stratified salt solution. For wave frequencies smaller in magnitude than the uniform
buoyancy frequency of the fluid, the characteristic rays of the inviscid wave equation
are straight lines with a definite angle of inclination depending on the frequency. In an
upright rectangular tank, the rays would propagate around the container ergodically
or, for special frequencies related to the rational numbers, would close after a finite
number of reflections. By making one of the sidewalls sloping, Maas et al. (1997)
introduced a wave attractor, in this case an inclined rectangle, into the problem
(Maas & Lam 1995). Their experiment indicates that the forced response is localized
in the neighbourhood of the attractor, and this concentration ultimately leads to
secondary effects such as mixing. Inertial waves in a rotating tank of similar shape
have also been studied by Maas (2001) and Manders & Maas (2003).

There is a close analogy between these problems. The relation between the tank with
the sloping sidewall and the upright rectangular tank is similar to the relation between
the spherical annulus and the full sphere. In each case, rays in the geometrically
simpler container (rectangular tank or full sphere) propagate ergodically or, for
special frequencies, form periodic orbits. The inviscid wave equation admits regular
eigenfunctions for a countable set of frequencies, which may or may not be those
for which the rays form periodic orbits. In the geometrically more complicated, but
more generic, containers, the rays are focused onto one or more wave attractors for
almost all wave frequencies, and the inviscid wave equation does not admit regular
eigenfunctions.

In problems of tidal forcing it is of great interest to know how the total dissipation
rate varies with the forcing frequency, as this determines the rate of secular evolution
of tidally interacting systems. When the viscosity is small, systems that possess regular
inviscid normal modes can be expected to exhibit a strong resonant amplification of
the dissipation rate in the vicinity of the eigenfrequencies, but very small dissipation
elsewhere. Although the eigenfrequencies may be everywhere dense in some interval,
the smooth forcing will have a significant overlap only with a few of the lowest-
order modes. In contrast, wave attractors have a structural stability, and exist in
intervals of frequency that depend on the geometry rather than the viscosity. Systems
possessing wave attractors can be expected to exhibit a richer response with significant
dissipation occurring over extended ranges of frequency.

The purpose of this paper is to analyse the linear response of such systems to
periodic forcing in the low-viscosity limit relevant to the geophysical and astrophysical
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applications. I work with simplified model problems, but also explain how they are
related to the original systems. The main result is a validation of the conjecture
of Ogilvie & Lin (2004) that, in problems where a wave attractor occurs, the total
dissipation rate tends to a non-zero value that is independent of both the magnitude
and the form of the small-scale damping process of the waves. This outcome differs
significantly from problems that possess regular inviscid normal modes and is of
primary importance for tidally interacting systems. The analysis presented here
provides a method of calculating the asymptotic dissipation rate and also describes
the spatial form of the forced disturbance.

The remainder of this paper is organized as follows. In § 2, I briefly describe the
problem of forced internal gravity waves as a definite example of the system under
consideration. I define a prototypical problem in § 3 and construct the asymptotic
solution in the limit of small viscosity. In § 4, I adapt the analysis to a related problem
in which the damping mechanism is not of a viscous nature. I present the results of
direct numerical calculations in § 5 and compare these with the asymptotic theory. A
concluding discussion is found in § 6.

2. Forced internal gravity waves
In this section, I outline the preliminary analysis for forced internal gravity waves

in a narrow tank. This is essentially identical to the problem studied by Maas et al.
(1997) except that a vortical body force is assumed rather than a parametric forcing.

Consider a fluid initially at rest in a gravitational field −g ez and with a uniform
temperature gradient β ez, where (x, y, z) are Cartesian coordinates. In the Boussinesq
approximation, the linearized equations for the velocity u and the temperature
perturbation θ are (Chandrasekhar 1961)

∂u
∂t

= −∇� + gαθ ez + ν∇2u + a, (2.1)

∂θ

∂t
= −βuz + κ∇2θ, (2.2)

∇ · u = 0, (2.3)

where � is the pressure perturbation divided by the reference density, α is the
coefficient of expansion, ν is the kinematic viscosity and κ is the thermal diffusivity.
The fluid is excited by an external body force a per unit mass.

Consider a two-dimensional problem, approximately representative of the situation
in a narrow tank, in which uy = ay = 0 and all quantities are independent of y. The
velocity is described by a streamfunction ψ such that

ux = −∂ψ

∂z
, uz =

∂ψ

∂x
. (2.4)

I focus on the limit of large Prandtl number in which κ can be neglected (except in
thermal boundary layers, which are of negligible thickness compared to the viscous
boundary layers). In reality, the Prandtl number of water exceeds 10 for temperatures
below about 10 ◦C, so this limit may be of some relevance for laboratory experiments
or for terrestrial tides confined in oceanic basins.

When considering the long-term response to a periodic force with (real) angular
frequency ω, all perturbation quantities may be assumed to have the form

u = Re[ũ(x, z) e−iωt ], (2.5)
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etc. Eliminating �̃ and θ̃ , one obtains the linearized vorticity equation in the form

iω∇2ψ̃ =
iN 2

ω

∂2ψ̃

∂x2
− ν∇4ψ̃ + f, (2.6)

where N2 = gαβ is the square of the buoyancy frequency and

f =
∂ãx

∂z
− ∂ãz

∂x
(2.7)

is the y-component (and only non-vanishing component) of the vorticity forcing
∇ × ã. (It may be noted that tidal forcing always derives from a potential and
therefore has no curl. Nevertheless, the dynamical tide in a body of non-uniform
density, or one with a free surface, does experience a vortical effective forcing as
explained in Appendix B.)

With rigid walls, the boundary conditions are

ψ̃ = 0, n · ∇ψ̃ = 0, (2.8)

where n is the outward normal vector on the boundary. The time-averaged dissipation
rate (per unit length in the y-direction) is

D = 1
2

∫ ∫
ν|∇2ψ̃ |2 dx dz, (2.9)

where the integral extends over the area of the container in the (x, z)-plane. Using
(2.6) and the boundary conditions, one can relate the dissipation to an overlap integral
between the vorticity forcing and the streamfunction in the form

D = 1
2
Re

∫ ∫
ψ̃∗f dx dz. (2.10)

The spectrum of internal gravity waves lies in the interval −N < ω < N . In this
range of frequencies, the inviscid version of (2.6), with ν = 0, involves a hyperbolic
operator

ω2∇2 − N2 ∂2

∂x2
= ω2 ∂2

∂z2
− (N2 − ω2)

∂2

∂x2
. (2.11)

The characteristics of the inviscid equation are straight lines with slopes ±ω(N2 −
ω2)−1/2 that depend on the wave frequency. The occurrence of wave attractors in
containers of various shapes has been illustrated by Maas et al. (1997).

3. A prototypical problem and its asymptotic solution
3.1. Definition of the problem

In this section, I slightly abstract the above problem and define a prototypical model
problem that is very closely related, but marginally simpler to solve. Consider the
equation

i
∂2ψ

∂x∂y
+ ε3∇4ψ = f, (3.1)

for an unknown function ψ(x, y) in a domain D ⊂ R2, with boundary conditions

ψ = 0, n · ∇ψ = 0 on ∂D. (3.2)

Here, ε � 1 is a small dimensionless parameter, f (x, y) is a given complex-valued
function and n is the outward normal vector on ∂D.
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As suggested by § 2, one can think of ψ as the streamfunction of a two-dimensional
flow of an incompressible fluid subject to no-slip boundary conditions. The viscosity
of the fluid is proportional to ε3 and the curl of the body force is proportional to f .
The limit ε � 1 corresponds to the Reynolds number being large. The problem is
linearized and a harmonic time-dependence of all quantities has been assumed. The
fluid has a restoring force such as buoyancy or the Coriolis force. In fact, the inviscid
part of the problem of forced internal gravity waves considered above can be rendered
exactly in this form by a linear transformation of the coordinates, depending on the
wave frequency, that maps the sloping characteristics onto horizontal and vertical
lines. In the process, the viscous ∇4 operator is slightly modified, although this has
essentially no practical consequences.

Consider the inviscid version of (3.1), obtained by setting ε = 0 and abandoning
the no-slip boundary condition n · ∇ψ = 0. The inviscid equation is hyperbolic and
its characteristics are horizontal and vertical lines. In general, the inviscid problem is
mathematically ill-posed and does not possess a regular solution. Instead, one must
consider the limit ε → 0 of the viscous problem.

The time-averaged energy dissipation rate may be defined as

D = 1
2

∫
D

ε3|∇2ψ |2 dA. (3.3)

Using (3.1) and the boundary conditions (3.2), one can relate the dissipation to an
overlap integral between the vorticity forcing and the streamfunction in the form

D = 1
2
Re

∫
D

ψ∗f dA. (3.4)

The problem at hand is to determine how D depends on ε in the limit ε → 0 (and
also on f and D if these are varied).

3.2. Ray circuits and the wave attractor

A ray segment consists of a horizontal or vertical line segment connecting two points
of ∂D (vertices) and lying wholly in D. A ray circuit consists of a connected set
of consecutive ray segments and represents the propagation of a wave characteristic
around the container. Typically, a ray circuit will be of infinite length. Exceptionally,
a circuit that closes on itself after a finite number of reflections is a periodic orbit.

In principle, the domain D may contain any number of periodic orbits. I consider
the case in which D contains exactly one periodic orbit and the orbit is simple (i.e.
a rectangle). Without loss of generality, one may place the origin of coordinates at
the bottom left-hand corner of the rectangle so that the corners OABC are at (0, 0),
(X, 0), (X, Y ) and (0, Y ) with X, Y > 0. I label the segments 1, 2, 3, 4 in the order
OA, AB , BC, CO . Let the slopes of the boundary at the four corners be sA = t1,
sB = −t−1

2 , sC = t3 and sO = −t−1
4 . Then tj > 0 is the tangent of the angle between the

‘incident’ ray (in the positive sense OABC) and the boundary at the end of segment j .
For rays close to the periodic orbit, the boundary may be represented locally by

linear approximations

y ≈ t1(x − X) near A,

y ≈ −t−1
2 (x − X) + Y near B,

y ≈ t3x + Y near C,

y ≈ −t−1
4 x near O.


 (3.5)
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Figure 1. Example of a quadrilateral domain containing a unique wave attractor.

The local approximate mapping of vertices defined by the ray propagation (in the
positive sense OABC) is then

(−t4y, y) 	→
(
t−1
1 y + X, y

)
	→

(
t−1
1 y + X, −t−1

1 t−1
2 y + Y

)
	→

(
−t−1

1 t−1
2 t−1

3 y, −t−1
1 t−1

2 y + Y
)

	→
(
−t−1

1 t−1
2 t−1

3 y, t−1
1 t−1

2 t−1
3 t−1

4 y
)
. (3.6)

On each loop, therefore,

(−t4y, y) 	→ α−1(−t4y, y), α = t1t2t3t4. (3.7)

It may be expected that α 
= 1 in a typical asymmetric container. The periodic orbit
is then attracting, and focuses rays propagating either in a positive sense (if α > 1)
or in a negative sense (if 0 < α < 1). I assume without loss of generality that α > 1
(the case 0 < α < 1 can be obtained by a reflection of the problem). The focusing
direction is then OABC and α is the focusing power of the attractor.

A particularly useful illustrative example is provided by a quadrilateral container
(figure 1). The quadrilateral is defined uniquely by specifying the rectangle OABC

and the four tangents tj . It can be shown that the wave attractor is unique. All ray
circuits other than the attractor itself converge towards the attractor at either end. I
assume that this property holds in the domain D.

The attractor divides the boundary into two zones, one consisting of OEA together
with BGC and the other consisting of AFB together with CHO . Ray circuits other
than the attractor itself have all their vertices in one zone or the other. Therefore
the attractor has two ‘sides’ to it, and any ray circuit converges towards the attractor
from the same side at either end.

For rays near the attractor one can measure the distance from the attractor using
the y-coordinates of the appropriate vertices (those near O). The entire bundle of rays
associated with one side of the attractor (e.g. the ‘positive’ side y > 0) can be labelled
using a variable θ+ ∈ [0, 1) defined as follows. One starts a ray at a vertex very close
to O and with y-coordinate y = α−n−θ+

for some arbitrarily large positive integer
n � 1. The ray is followed in the negative sense as it spirals away from the attractor.
Eventually, it turns around and converges towards the attractor again, having vertices
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very close to O with y-coordinates y ∼ α−n−Θ+(θ+), n � 1. This mapping between one
end of a ray circuit and the other defines a function Θ+(θ+), with Θ+ ∈ [0, 1).

The variable θ+ is periodic in nature (θ+ = 1 is identified with θ+ = 0) since the
ray bundle wraps around itself. The function Θ+(θ+) can be considered topologically
as a map of the circle onto itself. Owing to the reversibility of the ray circuit, it has
the self-inverting property Θ+(Θ+(θ+)) = θ+, which will be used later.

For the negative side y < 0 of the attractor, there is a similar variable θ− and
a mapping Θ−(θ−). In problems with multiple or non-simple attractors, a more
complicated mapping of ray bundles is likely to exist.

3.3. Construction of an asymptotic solution

In the limit ε → 0, the solution divides into three regions: (i) an inner region localized
near the wave attractor and consisting of a detached shear layer of width O(ε);
(ii) an outer region consisting of most of the rest of the container; (iii) standard
viscous boundary layers of width O(ε3/2) close to the walls. There are also boundary
layers in the corner regions close to the vertices of the attractor.

I first simplify the problem by assuming that a particular solution for the inviscid
problem can be found, i.e. a function ψ̂(x, y) satisfying the equation

i
∂2ψ̂

∂x∂y
= f (3.8)

without regard to boundary conditions. (This can be obtained by an indefinite
integration of −if with respect to x and y.) The desired solution is then ψ = ψ̂ + ψ̃

where ψ̃ satisfies the equation

i
∂2ψ̃

∂x∂y
+ ε3∇4ψ̃ = −ε3∇4ψ̂ (3.9)

and the boundary conditions

ψ̃ = −ψ̂, n · ∇ψ̃ = −n · ∇ψ̂. (3.10)

Note that f and ψ̂ are supposed to be smooth and do not have any fine structure
associated with boundary layers or shear layers. Therefore the right-hand side of
(3.9) is small everywhere and will be unimportant in constructing the leading-order
asymptotic solution. The inhomogeneity has effectively been transferred from the
differential equation to the boundary conditions.

3.4. The outer solution

The asymptotic outer solution is simply of the form

ψ̃ ∼ ψ̃ (out)(x, y). (3.11)

It satisfies the inviscid problem

i
∂2ψ̃ (out)

∂x∂y
= 0, (3.12)

with the boundary condition

ψ̃ (out) = −ψ̂. (3.13)

The second boundary condition is taken care of by the intervention of a standard
viscous boundary layer (region (iii) mentioned above).
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The general solution of (3.12) is

ψ̃ (out) = g(x) − h(y), (3.14)

where g and h are functions to be determined. Consider two consecutive vertices, P

and Q, say, of a ray circuit. If they are connected by a horizontal ray segment, they
share the same value of y and therefore of h(y). It follows from (3.13) and (3.14) that
g(xQ) − g(xP ) = ψ̂P − ψ̂Q. Similarly, for vertices connected by a vertical ray segment,

h(yQ) − h(yP ) = ψ̂Q − ψ̂P . Since ψ̂ is known, a knowledge of g (or h) at any vertex
would be sufficient to propagate the solution along the ray circuit. However the given
boundary conditions do not provide such information.

Consider the ray circuit as described in § 3.2. At each end of the circuit, the ray
indefinitely repeats a loop around the attractor OABC. Around each loop the value
of g must change by an amount

δ = ψ̂O − ψ̂A + ψ̂B − ψ̂C, (3.15)

and the value of h also changes by δ. Since ψ̂ is smooth, one need not worry about
the small variation of ψ̂ close to the vertices of the attractor. In fact,

δ =

∫ ∫
∂2ψ̂

∂x∂y
dx dy = −i

∫
f dA, (3.16)

where the integration is over the area enclosed by the attractor. Therefore δ is
independent of the choice of particular solution ψ̂ . It is also notable that if, as in § 2,
f is the perpendicular component of the curl of the external force per unit mass, then
Stokes’s theorem provides a simple relation between δ and the line integral

∮
ã · dr

of the force around the attractor.
It follows that h(y) exhibits an increasingly fine structure and, in general, a

logarithmic divergence as y → 0. The same is true of g(x) near x = 0 and x = X, and
of h(y) near y = Y . This singular behaviour of the outer solution is the reason that
an inner region, in which viscosity regularizes the solution, is required. For small y,
one has

h(α−1y) − h(y) ≈ δ. (3.17)

Consider the positive side y > 0 first and define the variable ỹ+ = − ln y/ lnα, which
increases by 1 on each loop. Then h(y) ∼ h̃+(ỹ+) as y ↘ 0, with

h̃+(ỹ+ + 1) − h̃+(ỹ+) = δ. (3.18)

The general solution of this functional equation is

h̃+(ỹ+) = ỹ+δ + H+(θ+), (3.19)

i.e.

h(y) ∼
(

− ln y

lnα

)
δ + H+(θ+) as y ↘ 0, (3.20)

where

θ+ = ỹ+ mod 1 =

(
− ln y

lnα

)
mod 1 (3.21)
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is the ray-labelling variable introduced previously and H+ is an arbitrary function
with period 1. It may be expanded in a Fourier series

H+(θ+) =

∞∑
n=−∞

H+
n e2nπiθ+

. (3.22)

For the negative side of the attractor, a similar result holds, with

h(y) ∼
(

− ln |y|
ln α

)
δ + H −(θ−) as y ↗ 0 (3.23)

and

H −(θ−) =

∞∑
n=−∞

H −
n e2nπiθ−

. (3.24)

Now consider the total change in h(y) around the ray circuit, from a vertex with
y = α−n1−θ+

, n1 � 1, to a vertex with y ∼ α−n2−Θ+(θ+), n2 � 1. This change can be
computed numerically by summing the values of ψ̂ , with appropriate signs, at the
vertices visited by the ray circuit. The total change can be written as[

n2 + Θ+(θ+) − n1 − θ+
]
δ + ∆+(θ+), (3.25)

where ∆+ does not depend on n1 or n2 because to increment either by 1 adds a loop
around the attractor at one end and changes h(y) by ∓δ at that end. Owing to the
reversibility of the ray circuit, ∆+(Θ+(θ+)) = −∆+(θ+).

Connecting the asymptotic forms, (3.20), of the solution at the two ends of the
circuit, one finds

H+(Θ+(θ+)) − H+(θ+) = ∆+(θ+). (3.26)

The general solution of this functional equation is

H+(θ+) = − 1
2
∆+(θ+) + J +(θ+), (3.27)

where J + is an arbitrary function satisfying the symmetry condition J +(Θ+(θ+)) =
J +(θ+). An analogous equation holds for the negative side of the attractor. There is
insufficient information to determine the solution uniquely until the equations for H+

and H − can be linked through the dynamics in the inner region.

3.5. The inner solution

The inner solution is localized near the attractor and consists of four segments. I
begin by defining coordinates parallel (ξ ) and perpendicular (η) to the ray in each
segment:

ξ1 = x, η1 = ε−1y (segment OA),
ξ2 = y, η2 = ε−1(x − X) (segment AB),
ξ3 = (X − x), η3 = ε−1(Y − y) (segment BC),
ξ4 = Y − y, η4 = ε−1(−x) (segment CO).


 (3.28)

In segment j the parallel coordinate ξj runs from 0 to Ξj , where Ξ1 = Ξ3 = X and
Ξ2 = Ξ4 = Y . The perpendicular coordinate ηj is stretched to resolve the inner region
of width O(ε). In segment j , the asymptotic inner solution is of the form

ψ̃ ∼ ψ̃
(in)
j (ξj , ηj ) (3.29)
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and satisfies the equation

i
∂2ψ̃

(in)
j

∂ξj ∂ηj

+
∂4ψ̃

(in)
j

∂η4
j

= 0, (3.30)

which follows from (3.9) under the assumed scalings.
Part of the difficulty in solving (3.30) consists of connecting the four segments.

Boundary conditions apply in the corner regions where the segments meet and the
wave is reflected. Where segment j overlaps with segment j + 1, the asymptotic
solution consists simply of the linear superposition of ψ̃

(in)
j and ψ̃

(in)
j+1, because (3.30)

is linear and homogeneous. In the corner region, ξj and ξj+1 are essentially constant
while ηj and ηj+1 vary by O(1). Therefore the corner solution is of the form

ψ̃ ∼ ψ̃
(in)
j (Ξj, ηj ) + ψ̃

(in)
j+1(0, ηj+1). (3.31)

The location of the boundary is given by

ηj+1 = t−1
j ηj + O(ε). (3.32)

From the boundary condition ψ̃ = −ψ̂ , one obtains the relation

ψ̃
(in)
j+1(0, t−1

j ηj ) = −ψ̃
(in)
j (Ξj, ηj ) − ψ̂j , (3.33)

which connects the solutions in consecutive segments. (To satisfy the second boundary
condition n · ∇ψ = 0, a thinner boundary layer must intervene in the corner.) At the
vertex O , the corresponding relation is

ψ̃
(in)
1 (0, t−1

4 η4) = −ψ̃
(in)
4 (Ξ4, η4) − ψ̂4. (3.34)

I now define a connected inner solution by concatenating the solutions in the
various segments. To connect the perpendicular coordinates smoothly, let

η =




η1 in segment OA,
t1η2 in segment AB ,
t1t2η3 in segment BC,
t1t2t3η4 in segment CO ,

(3.35)

i.e. η = fjηj in segment j , with f1 = 1 and

fj =

j−1∏
k=1

tk (j > 1). (3.36)

To leave (3.30) in the same form, the parallel coordinate ξj must be rescaled by a
factor f 3

j . For a continuous concatenation of the parallel coordinates, let

ξ =




ξ1 in segment OA,
f 3

2 ξ2 + Ξ1 in segment AB ,
f 3

3 ξ3 + Ξ1 + f 3
2 Ξ2 in segment BC,

f 3
4 ξ4 + Ξ1 + f 3

2 Ξ2 + f 3
3 Ξ3 in segment CO ,

(3.37)

i.e. ξ = ξ1 in segment 1 and

ξ = f 3
j ξj +

j−1∑
k=1

f 3
k Ξk (3.38)



30 G. I. Ogilvie

in segment j > 1. This coordinate runs from 0 to Ξ around the attractor, where

Ξ =

4∑
j=1

f 3
j Ξj =

(
1 + t3

1 t3
2

)
X + t3

1

(
1 + t3

2 t3
3

)
Y. (3.39)

The solution itself, away from the corners, may then be written in the form

ψ̃ ∼ ψ̃ (in)(ξ, η) (3.40)

with

ψ̃ (in)(ξ, η) = (−1)j−1ψ̃
(in)
j (ξj , ηj ) +

j−1∑
k=1

(−1)kψ̂k (3.41)

in segment j . The boundary condition (3.33) then translates simply into the condition
that ψ̃ (in)(ξ, η) be continuous at each vertex. Meanwhile, (3.30) becomes simply

i
∂2ψ̃ (in)

∂ξ∂η
+

∂4ψ̃ (in)

∂η4
= 0. (3.42)

This concatenation procedure effectively ‘irons out’ the corners in the attractor,
allowing the solution to proceed continuously. It is important to note that the
coordinates (ξ, η) cover the corner regions twice. As noted above, in the corner
regions, the asymptotic solution is the sum of the solutions in the segments that meet
there.

In fact, the boundary condition at vertex O is different because the perpendicular
coordinate η undergoes a net focusing by a factor of α after one loop around the
attractor. The boundary condition there is

ψ̃ (in)(Ξ, αη) = ψ̃ (in)(0, η) + δ. (3.43)

To satisfy this condition requires a kind of self-similar viscous spreading of the shear
layer to compensate for the geometrical focusing. Such a self-similar expansion occurs
in the solutions of Moore & Saffman (1969) for detached shear layers in rotating
fluids, which were used by Rieutord et al. (2001) in their analysis of inertial waves in
a spherical annulus.

Define a similarity variable

τ = µ−1/3η (3.44)

where µ = ξ + c with c to be determined. For τ to map continuously at the vertex O

we require

(Ξ + c)−1/3αη = c−1/3η (3.45)

and therefore

c =
Ξ

α3 − 1
. (3.46)

One then writes

ψ̃ (in)(ξ, η) =
ξ

Ξ
δ + Ψ (µ, τ ) (3.47)

to accommodate the net increase around the loop. Here, µ runs from c to c + Ξ

around the attractor. Equation (3.42) translates into

i

(
∂

∂µ
− τ

3µ

∂

∂τ

) (
µ−1/3 ∂Ψ

∂τ

)
+ µ−4/3 ∂4Ψ

∂τ 4
= 0 (3.48)
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and the boundary condition (3.43) requires simple continuity:

Ψ (Ξ + c, τ ) = Ψ (c, τ ). (3.49)

Making the further transformation

µ = c eλ, (3.50)

where λ runs from 0 to 3 lnα, one obtains

i
∂2Ψ

∂λ∂τ
− i

3

∂Ψ

∂τ
− iτ

3

∂2Ψ

∂τ 2
+

∂4Ψ

∂τ 4
= 0. (3.51)

The coordinate λ is now periodic and ignorable, so the solutions are found by
separation of variables to be of the form

Ψn = eiknλχn(τ ), (3.52)

where kn = 2nπ/(3 ln α), n ∈ Z and χn satisfies the ordinary differential equation

−
(
kn + 1

3
i
)
χ ′

n − 1
3
iτχ ′′

n + χ ′′′′
n = 0. (3.53)

Solutions that do not diverge superexponentially as |τ | → ∞ can be obtained by the
Laplace transform method as in Moore & Saffman (1969), leading to the integral
representation

χ ′
n(τ ) = i

∫ ∞

0

e−ipτe−p3

p−3ikn dp. (3.54)

(These functions are related to Moore–Saffman functions of complex order and
can be expressed in terms of generalized hypergeometric functions.) The asymptotic
behaviour is

χ ′
n(τ ) ∼ (−3ikn)! e−(3/2)πknτ−1+3ikn as τ → +∞, (3.55)

χ ′
n(τ ) ∼ −(−3ikn)! e(3/2)πkn |τ |−1+3ikn as τ → −∞. (3.56)

Therefore, χ0(τ ) diverges logarithmically as τ → ±∞, while χn(τ ) for n 
= 0 is bounded,
but oscillates indefinitely. One may define χn(τ ) uniquely such that χn(0) = 0, say.
Then

χn(τ ) ∼ (−3ikn)!

3ikn

e∓(3/2)πkn |τ |3ikn + c±
n as τ → ±∞ (3.57)

for some constants c±
n . In the case n = 0, however,

χ0(τ ) ∼ ln |τ | + c
±
0 as τ → ±∞. (3.58)

The general solution of the inner problem is therefore given by (3.47) with

Ψ (µ, τ ) =

∞∑
n=−∞

µikn [anχn(τ ) + bn] , (3.59)

where an and bn are undetermined coefficients. Noting that |τ |3µ = |η|3 one finds the
outer limit of the inner solution to be

ψ̃ (in)(ξ, η) ∼ ξ

Ξ
δ + a0 ln |η| − 1

3
a0 ln(ξ + c) + a0c

±
0 + b0

+
∑
n
=0

[
an

(−3ikn)!

3ikn

e∓(3/2)πkn |η|3ikn + (anc
±
n + bn)(ξ + c)ikn

]
(3.60)

as η → ±∞.
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3.6. Asymptotic matching

The aim is now to determine the coefficients an by matching the outer limit of the
inner solution to the inner limit of the outer solution. (The coefficients bn will not be
required for a calculation of the asymptotic dissipation rate.) I consider the matching
on segment 1; it is straightforward to show that the solution then matches in the
same way on the other segments.

The inner limit of the outer solution near segment 1 is, for y > 0 or y < 0,
respectively,

ψ (out)(x, y) ∼ g(0) −
(

− ln |y|
lnα

)
δ − H ±(θ±), (3.61)

where again

θ± =

(
− ln |y|

lnα

)
mod 1. (3.62)

To compare this solution with the outer limit of the inner solution, (3.60), note that
η = ε−1y and therefore

|η|3ikn = e2nπi ln |η|/ ln α = e−2nπiθ±
e−2nπi ln ε/ ln α. (3.63)

I consider first the positive side y > 0 of the attractor and identify

a0 =
δ

lnα
, (3.64)

an = − 3ikn

(−3ikn)!
e(3/2)πkne2nπi ln ε/ lnαH+

−n (n 
= 0). (3.65)

Matching on the negative side yields the same expression for a0, and

an = − 3ikn

(−3ikn)!
e−(3/2)πkne2nπi ln ε/ ln αH −

−n (n 
= 0). (3.66)

It follows that the functions H+(θ+) and H −(θ−) are related to each other in the
Fourier domain by

H+
n = e3πknH −

n , n 
= 0. (3.67)

(The mean values of H ±, H
±
0 , are not determined by the matching procedure. The

relation (3.67) implies that, if H ± are analytic functions, they are identical except
that their arguments are shifted by iπ/ ln α in the complex plane and they also differ
in value by an additive constant.) Physically, this relation is achieved by a viscous
diffusion across the shear layer, which allows information to be transmitted across
the characteristics of the inviscid equation.

Now using the identity

|(ix)!|2 =
πx

sinh(πx)
(3.68)

for real x, one obtains

|a−n|2 =
3kn

2π
(|H+

n |2 − |H −
n |2) (n 
= 0). (3.69)

3.7. The dissipation rate

The energy dissipation rate D is of order unity in the limit ε → 0 and is dominated
by the inner region. To see this, consider the following order-of-magnitude estimates,
bearing in mind that the dissipation rate is the area integral of the viscosity multiplied
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by the square of the vorticity. In the outer region, the streamfunction, velocity and
vorticity are all O(1), the area of the region is O(1) and the dissipation rate is
therefore O(ε3); it is small just because the viscosity is small. In the boundary layers,
the velocity is O(1), the vorticity is O(ε−3/2), the area is O(ε3/2) and the dissipation
rate is therefore O(ε3/2). Finally, in the inner region, the streamfunction is O(1), the
velocity is O(ε−1), the vorticity is O(ε−2), the area is O(ε) and the dissipation rate
is therefore O(1). I now calculate an exact asymptotic expression for the dissipation
rate.

The element of area in segment j of the inner region is

dA = dx dy = ε dξj dηj = εf −4
j dξ dη. (3.70)

Under the transformation from (ξ, η) to (µ, τ ) this becomes

dA = εf −4
j µ1/3 dµ dτ. (3.71)

The vorticity is dominated by perpendicular derivatives of the streamfunction:

∇2ψ ∼ ε−2 ∂2ψ̃ (in)

∂η2
j

= ε−2f 2
j µ−2/3 ∂2Ψ

∂τ 2
. (3.72)

The dissipation rate at leading order therefore simplifies to

D ∼ 1
2

∫ ∞

−∞

∫ 3 ln α

0

∣∣∣∣∂
2Ψ

∂τ 2

∣∣∣∣
2

dλ dτ. (3.73)

The different ‘modes’ proportional to eiknλ add in quadrature with the result

D ∼ 3
2
lnα

∞∑
n=−∞

|an|2 dn, (3.74)

where

dn =

∫ ∞

−∞
|χ ′′

n (τ )|2 dτ (3.75)

is merely a property of the basis functions. The integrals dn are convergent; the
dissipation is well localized even if the streamfunction is not. To evaluate dn, I use
the integral representation (3.54) to obtain

dn =

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

ei(q−p)τe−p3−q3

(
q

p

)3ikn

pq dp dq dτ. (3.76)

The integration with respect to τ is carried out first, using the identity∫ ∞

−∞
ei(q−p)τ dτ = 2πδ(q − p), (3.77)

and leading to the simple result

dn = 2π

∫ ∞

0

e−2p3

p2 dp = 1
3
π. (3.78)

The asymptotic dissipation rate is therefore

D ∼ 1
2
π ln α

∞∑
n=−∞

|an|2. (3.79)

Note that |an|2 can be related to the outer solution by (3.64) or (3.69).
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4. A problem with a non-viscous damping force
4.1. Motivation

In this section, I investigate a related problem in which the weak viscous force, which
depends on second derivatives of the velocity, is replaced by a weak damping force
of non-viscous form, depending on the velocity itself. I show below that the same
asymptotic dissipation rate is obtained in this case, implying that the dissipation rate
is robust, being independent of both the magnitude and the form of the damping
force in the limit that the damping is weak.

One reason for investigating this robustness is that the true mechanism by which
tidal disturbances in astrophysical bodies, such as inertial waves in the convective
regions of giant planets, are damped is uncertain. The true viscosity is exceedingly
small, and the waves may decay more readily by other means. Their interaction with
convective motions might be modelled in terms of an eddy viscosity, but the validity
of such an approach is unclear and estimates of the relevant effective viscosity vary
widely. Alternatively, inertial waves may undergo Ohmic damping in the presence of
a magnetic field since they couple to Alfvén waves on small scales. They may also
experience nonlinear parametric decay into waves of shorter wavelength. The last two
mechanisms are probably modelled more accurately, although still only crudely, by
using a ‘frictional’ damping force proportional to the velocity, rather than a viscous
force.

Another way to view the following analysis is that it results from the Landau
prescription in which the frequency of the forced wave is given a small positive
imaginary part, thereby rendering the inviscid problem soluble, and a limit is taken
in which the imaginary part of the frequency tends to zero. Such an approach might
be justified by a consideration of the late-time asymptotic solution of the inviscid
initial-value problem constructed by a Laplace transform method.

4.2. Sketch of the analysis

Instead of (3.1), I now consider

i
∂2ψ

∂x∂y
− ε∇2ψ = f, (4.1)

with the boundary condition

ψ = 0 on ∂D. (4.2)

The dissipation rate for this problem is

D = 1
2

∫
D

ε|∇ψ |2 dA = 1
2
Re

∫
D

ψ∗f dA. (4.3)

The analysis proceeds in a very similar way to the previous calculation and it is
necessary only to point out the essential differences. One simplification is that no
viscous boundary layers occur, although, in fact, it was not necessary to consider
the boundary layers of the previous problem in any detail. The essential differences
appear in the analysis of the inner region, which is again of width O(ε). The reduced
equation (3.30) in segment j becomes

i
∂2ψ̃

(in)
j

∂ξj ∂ηj

−
∂2ψ̃

(in)
j

∂η2
j

= 0. (4.4)
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The factors of f 3 and t3 in (3.37)–(3.39) should be replaced by single powers and the
concatenated inner equation (3.42) becomes

i
∂2ψ̃ (in)

∂ξ∂η
− ∂2ψ̃ (in)

∂η2
= 0. (4.5)

A similarity solution satisfying the boundary conditions can be obtained in an
analogous way, now using variables τ = η/(ξ + c) and λ = ln(ξ/c + 1) with c =
Ξ/(α − 1). The parallel coordinate λ runs from 0 to lnα, not 3 ln α as previously. The
inner equation in similarity variables now reads

i
∂2Ψ

∂λ∂τ
− i

∂Ψ

∂τ
− iτ

∂2Ψ

∂τ 2
− ∂2Ψ

∂τ 2
= 0 (4.6)

and has solutions

Ψn = e3iknλχn(τ ) (4.7)

where I define kn = 2nπ/(3 ln α) as previously, and χn now satisfies

−(3kn + i)χ ′
n − iτχ ′′

n − χ ′′
n = 0. (4.8)

The Laplace transform method leads to

χ ′
n(τ ) = i

∫ ∞

0

e−ipτe−pp−3ikn dp = (−3ikn)! e−(3/2)πkn(τ − i)−1+3ikn , (4.9)

where the branch cut is confined to the upper half-plane. The asymptotic behaviour
as τ → ±∞ is precisely as in (3.55) and (3.56), and the asymptotic matching therefore
yields precisely the same values for the coefficients an.

Finally, the asymptotic dissipation rate is computed as

D ∼ 1
2

∫ ∞

−∞

∫ ln α

0

∣∣∣∣∂Ψ

∂τ

∣∣∣∣
2

dλ dτ ∼ 1
2
lnα

∞∑
n=−∞

|an|2dn, (4.10)

where now

dn =

∫ ∞

−∞
|χ ′

n(τ )|2 dτ = π. (4.11)

The end result is that the asymptotic dissipation rate is exactly the same as for the
viscous problem,

D ∼ 1
2
π ln α

∞∑
n=−∞

|an|2. (4.12)

5. Numerical solutions
Numerical solutions of (2.6), (3.1) and (4.1) in various quadrilateral domains

have been obtained by the following method. A nonlinear algebraic coordinate
transformation is first applied to map the quadrilateral domain onto the unit square.
The equations are then discretized using centred second-order finite differences,
resulting in a large linear system in block tridiagonal form. This is solved by a direct
method and the total dissipation rate is evaluated, again to second-order accuracy,
from a numerical integration based on either (2.9) or (2.10) (or their equivalents for the
other differential equations). Typically, (2.10) gives a much more accurate numerical
value for D, as it does not require a numerical differentiation of the solution.
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Figure 2. Dissipation rate versus damping parameter for (4.1) in a tilted square domain
(X = Y = 1, ti = 2) with uniform forcing (f = 1). The dashed line indicates the limiting value
expected on the basis of the asymptotic analysis.

(a) (b)

Figure 3. Spatial distribution of the dissipation rate for the problem referred to in figure 2.
(a) ε = 0.01 and (b) 0.003. In each case, a logarithmic colour scale over three orders of
magnitude is used.

One of the simplest problems involving a wave attractor is to solve (4.1) in a tilted
square domain (X = Y = 1, t1 = t2 = t3 = t4 
= 1) with uniform forcing (f = 1). The
dissipation rate for the case ti = 2 is plotted as a function of ε in figure 2, showing the
anticipated convergence to a non-zero limit as ε → 0. Of course, a higher numerical
resolution is required when ε is reduced. Figure 3 shows the spatial distribution of
the dissipation rate for ε = 0.01 and 0.003 as calculated with a numerical resolution
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Figure 4. The ray-mapping and forcing functions in the tilted square domain
(X = Y = 1, ti = 2) with uniform forcing (f = 1).

of 10002. As expected from the asymptotic solution, the dissipation is localized in the
neighbourhood of the attractor and the width of the beam is proportional to ε.

To determine the expected limiting value of D from the asymptotic analytical
solution, some calculation is required. The focusing and forcing constants α and δ

are easily evaluated. A simple program is then used to follow the propagation of rays
in the quadrilateral domain and thereby to evaluate the ray-mapping and forcing
functions Θ±(θ±) and ∆±(θ±); these are shown in figure 4.

Next the functional equations

H ±(Θ±(θ±)) − H ±(θ+) = ∆±(θ±) (5.1)

must be solved, subject to the coupling condition on the Fourier coefficients

H+
n = e3πknH −

n (n 
= 0). (5.2)

Equations (5.1) can be represented in the Fourier domain in the form

∞∑
n=−∞

M±
mnH

±
n − H ±

m = ∆±
m, (5.3)
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where

M±
mn =

∫ 1

0

e−2mπiθ±
e2nπiΘ±(θ±) dθ±, (5.4)

∆±
m =

∫ 1

0

e−2mπiθ±
∆±(θ±) dθ±. (5.5)

Equations (5.3) are semi-redundant because the symmetry properties Θ±(Θ±(θ±)) =
θ± and ∆±(Θ±(θ±)) = −∆±(θ±) ensure that the equations merely change sign when
acted upon by the appropriate operator with matrix coefficients M±

mn. It is most
convenient, for numerical purposes, to regard the unknown quantities as the ‘large’
Fourier coefficients H+

n (1 � n � N ) and H −
n (−N � n � −1) up to some finite

truncation order N , substituting for the ‘small’ coefficients using (5.2). The property
M

±
m0 = δm0 means that the quantities H

±
0 cannot be determined and in any case are

not required in order to calculate the asymptotic dissipation rate. In view of the
semi-redundancy, it is sufficient to solve only half of the truncated system of (5.3),
e.g. the ‘+’ equations for m > 0 and the ‘−’ equations for m < 0. The coefficients M±

mn

and ∆±
m are readily calculated to high accuracy from the computed functions Θ±(θ±)

and ∆±(θ±).
In practice, it is found that, for a smooth forcing function f , the coefficients an

typically decay rapidly with n so that a0 makes by far the dominant contribution
to D. This property is very convenient because a0 is easily calculated and does not
depend on the details of the global ray mapping. The dashed line in figure 2 indicates
the expected asymptotic value of D, to which terms other than a0 contribute less
than 1%. Convergence to the same dissipation rate is found for the viscous problem
defined by (3.1).

The asymptotic analytical solution is compared in detail with the direct numerical
solution in figure 5, which shows the y-component of the velocity along a cross-section
through the tilted square domain at y = 0.3. In drawing the asymptotic solution along
this section, the inner solutions corresponding to segments 2 and 4 are summed. No
attempt is made to patch with the outer solution, which is much smaller and more
difficult to determine properly. Even with this restriction the agreement is very good
at ε = 0.01.

6. Discussion
In this paper, I have considered a prototypical forced linear wave equation featuring

a wave attractor and weak viscous damping. This mathematical problem describes
the long-term linear response of a typical bounded fluid to a periodic body force
with a frequency within the range of inertial and gravity waves. Through asymptotic
analysis confirmed by direct numerical calculations in an illustrative quadrilateral
domain, I have shown that the forced disturbance is localized in the neighbourhood
of the attractor and that the total dissipation rate is asymptotically independent of
the viscosity. By considering a related equation with a non-viscous damping force, I
have argued further that the asymptotic dissipation rate is independent of the nature,
as well as the magnitude, of the weak damping mechanism.

These findings have important consequences for physical problems such as that
considered in § 2 and motivated by the experiments of Maas et al. (1997), in which
a periodic body force excites internal gravity waves in a narrow tank of non-
rectangular cross-section. In that problem, the wave attractors exist in certain intervals
of frequency that depend only on the geometry of the container. The long-term linear
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Figure 5. Cross-section at height y = 0.3 of the y-component of velocity, defined by
uy = −∂ψ/∂x, for the problem referred to in figure 2 with ε = 0.01. (a) The direct numerical
solution, (b) the sum of the asymptotic inner solutions for segments 2 and 4. —, real and . . . ,
imaginary parts of uy .

response of the fluid should give rise to a dissipation rate that is asymptotically
independent of the viscosity and is a smoothly varying function of the forcing
frequency within the interval associated with a given attractor. This differs markedly
from the case of an upright rectangular tank, in which the response of the fluid is
governed by resonances with the regular inviscid normal modes that can exist in
that container, and the dissipation rate will be very small except where it is strongly
amplified in the vicinity of the resonant frequencies of the lowest-order modes. As
noted by Maas et al. (1997), wave attractors have a ‘finite bandwidth’ while the width
of a normal-mode resonance is limited by viscosity.

Ogilvie & Lin (2004) studied the linear response of a giant planet with an extended
convective region to periodic tidal forcing. Inertial waves propagating in the annular
convective region do not form regular eigenfunctions in the absence of viscosity.
Numerical solutions indicated that, when the Ekman number is small, the disturbance
tends to be localized on a web of rays. For intervals of frequency in which simple
wave attractors exist, it was possible to identify their appearance in the solutions. In
figure 10 of Ogilvie & Lin (2004) it can be seen that the dissipation rate appears
to have converged to a value independent of the viscosity in the intervals where the
dissipation rate is largest. It can be confirmed by tracing rays in the annulus that
these intervals are those associated with the simplest and most powerfully focusing
wave attractors. Although more complicated attractors exist outside these intervals,
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their focusing power is evidently not great enough to have led to a convergence
of the dissipation rate at an Ekman number of 10−8. These numerical results are
qualitatively consistent with the conclusions of the present paper, and in future work
we will attempt to evaluate the asymptotic dissipation rate for tidal forcing in a
spherical annulus directly using the methods described here.

Forced inertial waves in a rotating incompressible fluid contained in a spherical
annulus were computed by Tilgner (1999), who noted that wave attractors can be
detected in the solutions at small Ekman numbers, but that other complicating
features are also present. In his problem, which derives from earlier experimental
studies, the forcing results from a sinusoidal modulation of the rotation rate of the
boundaries, which is communicated to the fluid through viscous boundary layers. As
the viscosity is reduced, the energy of the forced disturbance is also diminished. This
behaviour is different from that found in the present paper with a distributed body
force that is independent of viscosity, such as that resulting from tidal forcing.

The apparent robustness of the dissipation rate is reassuring when it is considered
that the true mechanism by which the inertial waves are damped is uncertain and
difficult to model accurately. It is likely that the result is reasonably robust in other
ways as well. For example, small corrugations of the boundary may not be as
important for inertial waves as for acoustic waves, which undergo specular reflection.
Inertial waves of a given frequency can propagate only in four different directions,
and the angle of reflection will not be changed by a small corrugation. The wave
attractors depend more on the gross shape of the container than on the precise
contours of the boundary.

It is also noteworthy that the ‘inner’ equations (3.30) and (4.4) studied in this
paper are generic in the following sense. Provided that the inviscid wave equation is a
hyperbolic second-order linear partial differential equation, its characteristics can be
determined and any wave attractors identified. Curvilinear coordinates can then be
introduced parallel and perpendicular to each segment of the attractor. If the equation
contains a weak damping term resulting from a positive operator of either fourth or
second order, then the coordinates can always be rescaled to obtain (3.30) or (4.4),
respectively. This is true even if the inviscid equation has non-constant coefficients
and the damping operator is anisotropic and depends on position, provided that there
are no singularities such as corotation resonances or critical latitudes.

Further work is required to understand the transition from normal modes to wave
attractors as the geometry of the container is varied. Ogilvie & Lin (2004) found that
some ‘memory’ of the normal modes of inertial waves in a full sphere was retained
when a small solid core was introduced. Even though no inviscid normal modes
are believed to exist in a spherical annulus, the dissipation rate is still enhanced in
the vicinity of the eigenfrequencies of the lowest-order modes of the full sphere. An
imperfect resonance is possible with such modes, which have a length-scale larger
than the radius of the core and are not greatly affected by it. At the same time,
introduction of the solid core allows a much richer response at other frequencies,
associated with wave attractors. It is possible that in such problems the attractors
achieve complete dominance only at Ekman numbers yet smaller than those achieved
in recent numerical studies.

A remarkable theory of axisymmetric inertial waves in an incompressible rotating
fluid contained in a spherical annulus was developed by Rieutord et al. (2002),
who considered normal modes that are regularized and damped by viscosity. Their
problem is similar to that considered in the present paper, but there are also important
differences. Neglecting some of the effects of curvature so as to make the equations



Wave attractors and tidal disturbances 41

somewhat simpler, they found asymptotic solutions for normal modes in the limit
of small Ekman number, in excellent agreement with their numerical calculations.
The modes are localized near a wave attractor and satisfy an eigenvalue problem
analogous to that for the wavefunction of a quantum-mechanical harmonic oscillator.
The width of the shear layers in these modes scales with ν1/4, although the authors
noted that ν1/3 layers also play a role when the problem is studied in full spherical
geometry. In contrast, the solutions described in § 3 have only a ν1/3 shear layer and
satisfy a different inner equation that has no strictly localized solutions but is forced
from the outside. The reason for the different scalings is that the normal modes
considered by Rieutord et al. (2002) have frequencies that are asymptotically close to
the edge of the band within which the attractor exists, so that the attractor is very
weak and its focusing power α is asymptotically close to 1. In contrast, the forced
solutions in the present paper are constructed for the more interesting frequencies
that lie properly within the bandwidth of the attractor, so that α is not very close
to 1. It is likely that a different asymptotic theory of forced oscillations could be
constructed for values of α very close to 1, which would more closely resemble the
analysis of Rieutord et al. (2002). However, it still remains to be demonstrated in
detail how the analysis in the present paper applies to forced oscillations in spherical
geometry.

I thank Doug Lin for introducing me to this problem and for ongoing discussions,
as well as for hospitality at UC Santa Cruz where some of this work was carried
out. I also thank Rainer Hollerbach, John Papaloizou, Michel Rieutord and Yanqin
Wu for helpful discussions, and the anonymous referees for their useful suggestions.
I acknowledge the support of the Royal Society through a University Research
Fellowship.

Appendix A. Character of the inviscid linearized equations
The equations governing the dynamics of an ideal fluid with negligible self-gravity

may be written

Du
Dt

= − 1

ρ
∇p − ∇Φ, (A 1)

Dρ

Dt
= −ρ∇ · u, (A 2)

Dp

Dt
= −γp∇ · u, (A 3)

where Φ is the external gravitational potential and the notation is standard. Let
(r, φ, z) be cylindrical polar coordinates and consider a basic state consisting of an
axisymmetric fluid body with angular velocity Ω(r, z) and no meridional flow. For
small perturbations of the form

Re
[
u′(r, z) e−iωt+imφ

]
, (A 4)

etc., the linearized equations read

−iω̂u′
r − 2Ωu′

φ = − 1

ρ

∂p′

∂r
+

ρ ′

ρ2

∂p

∂r
, (A 5)

−iω̂u′
φ +

1

r

(
u′

r

∂

∂r
+ u′

z

∂

∂z

)
(r2Ω) = − imp′

ρr
, (A 6)
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−iω̂u′
z = − 1

ρ

∂p′

∂z
+

ρ ′

ρ2

∂p

∂z
, (A 7)

−iω̂ρ ′ + u′
r

∂ρ

∂r
+ u′

z

∂ρ

∂z
= −ρ

[
1

r

∂

∂r
(ru′

r ) +
imu′

φ

r
+

∂u′
z

∂z

]
, (A 8)

−iω̂p′ + u′
r

∂p

∂r
+ u′

z

∂p

∂z
= −γp

[
1

r

∂

∂r
(ru′

r ) +
imu′

φ

r
+

∂u′
z

∂z

]
, (A 9)

where ω̂ = ω − mΩ is the Doppler-shifted wave frequency. Eliminate u′
φ and ρ ′ to

obtain

(ω̂2 − A)u′
r − Bu′

z = − iω̂

ρ

(
∂p′

∂r
− ∂p

∂r

p′

γp

)
+ 2Ω

imp′

ρr
, (A 10)

−Cu′
r + (ω̂2 − D)u′

z = − iω̂

ρ

(
∂p′

∂z
− ∂p

∂z

p′

γp

)
, (A 11)

where

A =
2Ω

r

∂

∂r
(r2Ω) − 1

ρ

∂p

∂r

(
1

γp

∂p

∂r
− 1

ρ

∂ρ

∂r

)
, (A 12)

B =
2Ω

r

∂

∂z
(r2Ω) − 1

ρ

∂p

∂r

(
1

γp

∂p

∂z
− 1

ρ

∂ρ

∂z

)
, (A 13)

C = − 1

ρ

∂p

∂z

(
1

γp

∂p

∂r
− 1

ρ

∂ρ

∂r

)
, (A 14)

D = − 1

ρ

∂p

∂z

(
1

γp

∂p

∂z
− 1

ρ

∂ρ

∂z

)
. (A 15)

Then eliminate u′
r and u′

z to obtain

(ω̂2 − D)
∂2p′

∂r2
+ (B + C)

∂2p′

∂r∂z
+ (ω̂2 − A)

∂2p′

∂z2
+ (terms in p′ and ∇p′) = 0. (A 16)

This equation is hyperbolic when

4(ω̂2 − A)(ω̂2 − D) < (B + C)2, (A 17)

i.e. for frequencies such that

(A + D)2 − [(B + C)2 + (A − D)2]1/2 < 2ω̂2 < (A + D)2 + [(B + C)2 + (A − D)2]1/2.

(A 18)

(The Høiland criteria for stability with respect to axisymmetric perturbations are
A + D > 0 and AD > BC (e.g. Tassoul 1978). For a Høiland-stable basic state the
hyperbolic range of frequencies may or may not include ω̂ = 0.)

Appendix B. Vortical effective forcing
Ogilvie & Lin (2004) studied the linear response of a rotating giant planet (or star)

to tidal forcing in circumstances in which the forcing frequency is comparable to
the angular velocity Ω of the body, but small compared to its dynamical frequency
(GM/R3)1/2. They used a consistent asymptotic expansion to simplify the equations
satisfied by the tidal disturbance in both convective and radiative regions. The tidal
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force, which derives from a perturbing gravitational potential, is taken up by a quasi-
hydrostatic adjustment (a tidal bulge) known as the equilibrium tide. Because the
tidal frequency is non-zero, the motion of the bulge gives rise to a non-zero velocity
field ue associated with the equilibrium tide, which can be derived analytically. The
existence of inertial forces associated with this flow mean that the quasi-hydrostatic
bulge does not quite satisfy the equation of motion and a residual force appears.

In quantitative terms, the total velocity perturbation u in an adiabatically stratified
(i.e. convective) region satisfies the equations

−iω̂u + 2Ω × u = −∇W, (B 1)

∂ρ ′
e

∂t
+ ∇ · (ρu) = 0, (B 2)

where ω̂ = ω − mΩ is the Doppler-shifted frequency as in Appendix A, W is the
pressure perturbation divided by the density, plus the total gravitational potential
perturbation, and ρ ′

e is the density perturbation associated with the equilibrium tide
(any additional density perturbation being much smaller). Here it is assumed for
simplicity that the fluid is uniformly rotating and the viscosity is neglected. Now since

∂ρ ′
e

∂t
+ ∇ · (ρue) = 0, (B 3)

the residual ‘dynamical tide’ ud = u − ue is found to satisfy the equations

−iω̂ud + 2Ω × ud = −∇W + a, (B 4)

∇ · (ρud) = 0, (B 5)

where

a = iω̂ue − 2Ω × ue. (B 6)

The dynamical tide therefore obeys the anelastic approximation, in which the modified
pressure perturbation W must adjust to satisfy the constraint ∇ · (ρud) = 0, and is
driven by an effective body force a per unit mass. In general, this effective force is
vortical, because ∇ × a 
= 0.
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